
tw

I

NASA Technical Memorandum 109003
i"

A PC-Based Simulation of the

National Transonic Facility's
Safety Microprocessor

J. J. Thibodeaux

NASA Langley Research Center
Hampton, Virginia

W. A. Kilgore and S. Balakrishna
ViGYAN, Inc.

Hampton, Virginia

JULY 1993

(NASA-TM-109003) A PC-BASED

SIMULATION OF THE NATIONAL
TRANSONIC FACITITYIS SAFETY

MICROPROCESSOR (NASA) 76 p

G3/62

N93-32224

Unclas

0179493

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

SUMMARY

A short study was undertaken to demonstrate the feasibility

of using a state-of-the-art off-the-shelf high speed personal

computer (PC) for simulating a microprocessor presently used for

windtunnel safety purposes at Langley Research Center's National

Transonic Facility (NTF). Currently, there is no active display

of tunnel alarm/alert safety information provided to the tunnel

operators, but rather such information is periodically recorded

on a process monitoring computer printout. While this recording

does provide adequate data, generally, it does not provide on-

line centralized situational information nor permit rapid

identification of safety operational violations which are able to

halt tunnel operations. It was therefore decided to simulate the

existing safety control algorithms and briefly evaluate a real-time

display which could provide both current equipment position as

well as trouble shooting information. The initial step of this

study was to transform the existing microprocessor software into

QuickBasic (version 4.5) software for programming into the selected

personal computer. After this, hardware checkout was begun. For

demonstration, and final evaluation, an already existing PC-based

signal input generator was connected to the simulated safety

microprocessor. This device was used to simulate inputs that would

normally be supplied by tunnel transducers. This study together

with another recent control application has shown these inexpensive

computers to be reliable, and can be used for sophisticated tasks

1

such as information display and protection of expensive wind tunnel

equipment at very modest costs. Furthermore, it was learned that

safety code transformation along with generating a highly accurate

complex situational/warning display could be achieved without

great deal of effort. Included in this short document is the PC

source code for the simulation, and a selected real-time alert

display along with a brief explanation of the various tunnel safety

control checks performed by the NTF's safety microprocessor.

f

2

INTRODUCTION

The National Transonic Facility, which is the world's largest

cryogenic wind tunnel, was commissioned in May 1982. References 1

and 2 describe the operational characteristics of this facility

along with some of its special features. Until recently, this

elaborate research test facility was still using the microprocessor

systems that were designed using 1970's type of computer technolo-

gy. Five of these microprocessors that were used to control and

regulate Mach number, temperature, pressure, fan speed, and test

section configuration have been recently replaced with 1990's

computing technology. The many recent technological advances and

innovations that have taken place in computers has helped initiate

the changeover to this newer equipment. A noteworthy amount of

these advances have also occurred in personal computers (PC's).

Among these is the capability for high frequency computation at

greater signal bit resolution while simultaneously realizing

decreasing costs and significantly increased reliability.

Currently, a PC clone (12 Nhz CPU, EGA video, with a hard disk, and

an eight channel digital-to-analog converter) computer has been

operating Langley Research Center's 0.3-meter cryogenic wind tunnel

since 1988 (reference 3). This system has now been operating very

efficiently for several thousand hours without any major downtime.

Rarely has board level replacement been necessary, but when it was

once required,i quick low cost repairs resulted.

To address the need for a real-time display of NTF safety

operational information, and to better understand the existing

safety microprocessor code for future enhancement purposes, it was

decided to research the application of an advanced high-speed

personal computer for use as a potential replacement for the

existing NTF tunnel safety microprocessor. The system consisted of

a high speed 386-chip personal computer, 16-bit analog-to-digital,

and digital input/output hardware. A second PC was used as a

signal generator (reference 4) to provide inputs for software

checkout, and display evaluation of the simulated safety micropro-

cessor. Results as well as the source code listing of those

operational tests are presented here.

m

4

SYMBOLS

p

ALPHAB

ALPHAT

BETABF

BETABN

BETATF

BETATN

CD

DISABE

GAMABF

GAMABN

GAMAFS

GAMANS

GAMATF

GAMATN

MACHSQ

PRATO

PSTAT

QCOMP

RHO

ROL

XGVA

XNBF

Bottom test section wall position, degrees

Top test section wall position, degrees

Bottom far-side model support wall position, degrees

Bottom near-side model support wall position, degrees

Top far-side model support wall position, degrees

Top near-side model support wall position, degrees

Radial distance between model support wall pivot point

and corresponding reentry flap tip, inches

Pitch limit disable logic switch

Bottom far-side reentry flap position, degrees

Bottom near-side reentry flap position, degrees

Far-side vertical wall reentry flap position, degrees

Near-side vertical wall reentry flap position, degrees

Top far-side reentry flap position, degrees

Top near-side reentry flap position, degrees

Mach number squared

Ratio of total to static pressure (XPRES/PSTAT)

Static pressure, psi

Computed tunnel dynamic pressure, psi

Density, ibm/cubic inch

Arc sector roll angle, degrees

Inlet guide vane angle, degrees

Angle between bottom far-side model support wall and

its pivot-to-reentry flap tip radius, degrees

XNBN

XNTF

XNTN

XPRES

XPSP

XQDIAL

XSTRDM

XSTRDP

XSTRUT

(%)

(#)

(¥)

Angle between bottom near-slde model support wall and

its pivot-to-reentry flap ti_ radius, degrees

Angle between top far-side model support wall and its

pivot-to-reentry flap tip radius, degrees

Angle between top near-side model support wall and its

pivot-to-reentry flap tip radius, degrees

Total pressure, psi

Pitch hydraulic pump swash plate position, percent

Tunnel dynamic pressure thumbwheel limit, psi

Pitch angle thumbwheel negative limit, degrees

Pitch angle thumbwheel positive limit, degrees

Current arc sector pitch angle, degrees

Test section wall angle, degrees

Arc sector pitch angle, degrees

Model support wall angle, degrees

Angle between the model support wall and its pivot-to-

reentry flap tip radius, degrees

Angle between the model support wall and the reentry

flap, degrees

Increment

DISCUSSION

General Comments

Until recently, microprocessor computing capability used at

the NTF was approximately twenty years behind the current state-of

-the-art computer industry. Devices that were used for control

algorithm calculations were based on 1970's microprocessor

technology which consisted of compiled software code with floating

point hardware executing at a speed of approximately i00

milliseconds per control loop. All executable code resided in

non-volatile read-only EPROM-based memory. Eight-bit analog-to-

digital converters, which were the standard for that time period,

have been recently replaced with 16-bit devices to increase input

resolution. Process feedback generation was created by reading

analog signals by way of analog-to-digital converters while

display information was created by digital output devices. For

operational purposes, a clocked/watch dog timer interrupt structure

was used in this earlier microprocessor system. Control algorithm

execution was periodic at a fixed clock frequency which was checked

every period to ensure correct cycle time for self-diagnostic

purposes. This execution time was slowed somewhat due to

continuous memory sharing by an internal communication controller

module. Memory accesses to/from these locations were interleaved

between the communication controller and the main microprocessor

controller.

Because of hardware and software difficulties with these

older microprocessors as well as recent decreases in costs and

technical advances in computing technology, it was necessary to

replace this older equipment. While much of the old hardware

architecture has changed, the software has remained the same. A

research activity was initiated to investigate the potential of

simulating the NTF's safety microprocessor algorithms in a present

day low-cost high speed (386 micro-chip) off-the-shelf personal

computer, and explore the capability of such a device for PC-based

safety control and display. This effort was also directed at

assessing the existing software and eventually modifying

selected areas of code to more nearly match the tunnel testing

envelope. It was especially desirable to generate and explore the

benefits of a real-time display of tunnel safety operational

information.

Figure 1 is a schematic of equipment used for this study

while figure 2 is a photograph of this same hardware. The

hardware-ln-the-loop simulator, itself PC based, was

used to generate signals introduced to the safety micro

simulation via the analog wiring box. These input signals were

subsequently used to drive the various test alarms/alerts which

will be discussed in greater detail later. The base addresses for

the three a-to-d boards (DT-2801/5716A) as well as the base

addresses for the two DIO boards (DT-2817) of the safety micro are

shown in figure 1. Each of these DIO boards have four port

registers (ref. 5). For the study, one DIO board was configured

8

for accepting inputs while the other was setup to send alarm

discretes which simulate relay signals to the programmable ladder-

logic sequencers. There are three such sequencers currently used

at the NTF. Sequencers are used to prevent inadvertent damage to

equipment if improper operational sequences are attempted. The

first DIO board (base address H228) was configured such that two

ports were dedicated for accepting simulated pitch thumbwheel

limits (plus and minus) while the other two ports were used

additively to generate the tunnel dynamic pressure alarm limit.

The second board (base address H250) was configured strictly for

handling relay discrete outputs intended for sequencer specific

alarm action. The four discrete alarms selected for output were as

follows:

1) Tunnel dynamic pressure exceeding the thumbwheel

limit (+17.6 psi).

2) Arc sector pitch angle exceeding the plus (+16.0

deg.) and minus (-8.0 deg.) thumbwheel limits.

3) Model support walls bottom nearside/farside not in

synchronous operation (absolute difference in near

and far angles greater than 0.24 deg.).

4) Test section wall bottom/model support wall bottom

nearside/reentry flap bottom nearside collision (see

figure 3).

The number of alarm outputs thus generated was restricted to four

due to a limited number of slots available in the selected

computer. These alarms were selected as representative of those

used in the NTF. Any of the other conditions could have been

chosen for output. If this microprocessor were to be actively used

for tunnel safety monitoring, it would be necessary to free up an

additional computer slot and include another DIO board so as to

'accommodate other alarm outputs. All safety alerts of the program

however are visually presented on the display screen.

The initial phase of this study consisted of coding all safety

micro algorithms in the desk top PC. The QuickBasic code (ref. 6)

thus developed paralleled the general format of the existing safety

microprocessor Fortran 77 software. A basic difference between the

two sets of codes was that the PC software executed in the same

manner as the old micro software but without using subroutine

calls. In effect, the PC code is an in-line layout of the original

microprocessor software allowing efficient updating and develop-

ment. Appendix A contains the commented simulator source code

listing.

PC software coding began with the input of known conversion

constants and values of equipment physical limits, cosine's of

angles as well as analog-to-digital and digital input/output device

i

b@se addresses. After the input of constants, the analog-to-

digital boards were set up for reading the analog signals from

l
s_mulated field transducers generated by the input simulator. A

tQtal of nineteen inputs were thus brought into these converters.

Astatus check on the registers of the a-to-d boards as well as the

digital I/O boards was performed to ascertain if a fatal board

error had occurred. Because of the total number of signals, the

i0

use of three a-to-d boards (DT-2801/5716A), and two DIO boards (DT-

2817) was required to complete this simulation. It was these

feedback signals and calculations using these inputs which were

tested to ensure that no equipment violations occurred while

operating the tunnel. Signals thus introduced were converted into

real engineering numbers by directing them through calibration

equations, and these current values were then printed to the screen

for display. Figure 4 is the display (in an unalarmed state) used

for demonstration purposes in this simulation. The maximum and

minimum operational ranges for the particular equipment or variable

are shown tothe immediate right. These values were overwritten in

bright red in the event of an alarm situation. The current value of

the variable in question is displayed immediately to the left

within the parentheses. Various alerts corresponding to the

different software/hardware tests are shown later as examples. _ At

the bottom right are four zero digits. Each individual digit

cycles between 0 and 1 corresponding to the particular digital port

selected for outputting an alarm signal. From left to right, the

digits correspond to "TUNNEL Q EXCEEDED", "STRUT THUMBWHEEL VALUE

EXCEEDED", "MODEL SUPPORT WALL NOT IN SYNC", and "TEST SECTION WALL

BOTTOM/MODEL SUPPORT WALL BOTTOM FAR/REENTRY FLAP BOTTOM FAR WILL

COLLIDE" alarms.

After conversion to engineering units of the incoming data,

one of the first calculations performed in the program was the

determination of the radius arm "CD" of figure 3. This is

commented as subroutine "CALCD" in the software listing of

11

Appendix A. For the displaced model support wall and reentry flap,

this is the distance from the tip of the reentry flap to the pivot

point of the model support wall. Four separate calculations are

performed to account for the top far and nearside reentry flaps as

well as the bottom near and farside flaps. Subsequent to this, the

angles "XNTF, XNTN, XNBF, and XNBN" formed by the model support

walls and the respective radius arms "CD" previously determined

were computed. These parameters were computed in subroutine

"CALN", and then used in "TEST 02" to prevent test section walls

from colllding. Collision was avoided by maintaining the proper

distances between the top and bottom test section walls and the

model support walls as well as the distance between the test

section walls and the reentry flaps. This test will be derived

and discussed further in the software logic.

In order to prevent exceeding the tunnel Mach number of 1.25

and the operational tunnel dynamic pressure (1/2*RHO*V^2), two

separate computations were required. The square of the tunnel

operational Mach number was determined in "MACHIN" by using the

ratio of total to static pressure. If this was violated, then a

warning was printed to the screen. Following this, the computed

dynamic pressure was determined and later compared to a set of

thumbwheel input values that were brought in through the digital

input ports. These inputs correspond to the desired upper limit of

tunnel operational dynamic pressure. Likewise, if a violation of

dynamic pressure occurred, a red colored warning was written to the

screen. This will be shown later in "TEST 07" of the software.

12

The various tests programmed within the safety micro are

referred to as TEST 01, TEST 02, TEST 03, TEST 05, TEST 06, TEST

07, TEST i0, and TEST 11. All of these tests were exercised in the

simulation except TEST 05 which has been deactivated in the tunnel

software. Its description is given below. As can be seen, some of

the tests numbers are missing. This was a result of the evolution-

ary knowledge gained with tunnel operation, and experience. The

following is a brief discussion of each of the various software

tests.

Software Logic

TEST 01 examines the test section top and bottom wall angular

positions relative to zero i.e. parallel to the tunnel centerline.

Figure 3 provides a sideview of the bottom test section moveables

of the NTF. The sign convention selected for the moveables was

such that angular movement away from the tunnel centerline was

considered positive while toward the centerline was negative. The

exception to this convention was the angle (_) which was consid-

ered to always be positive. The dashed lines represent the angular

movement of these devices which are housed inside of the test

section. If either of the walls was not within +-0.02 degrees of

zero position, a warning was created. This test prevents model

access housings from being accidentally extended into the test

section unless the top and bottom walls are very near their zero

position. Figure 5 shows the alarms if either the top or bottom

test section walls was greater than or equal to +0.02 degrees.

Similarly, figure 6 constitutes the warnings if they were less than

13

or equal to -0.02. It should be noted that in either case an error

of 0.001 degrees has caused the alert/alarm conditions to occur.

This gives an idea of the accuracy of this simulation.

TEST 02 is a two-part test used to prevent the test section

walls, and model support walls, or reentry flaps from colliding.

There were two separate calculations within this main test. These

equations are developed here for future reference. Figure 3, as

mentioned earller, provides the sideview, dimensions, and angular

travel of the test section movables.

The first part of this test calculates the clearance of the

downstream end of the test section wall and the upstream end of the

model support wall. A safety interlock was initiated whenever this

clearance, YB-YA (from the sideview), became less than or equal to

0.5 inches. This clearance was initially two inches, but due to

knowledge gained during operations, it was reduced.

From the figure, the test section wall angle _) can be either

positive or negative while the model support wall angle (_) is

defined to be negative while traveling toward the stream flow.

Likewise, it is clear that:

YA = a + 300 sin (_)

and: YB = b + 132 sin (@).

Therefore, substituting these into the safety criteria we get:

b + 132 sin (_) - (a + 300 sin (5)) <= 0.5

or b - a + 132 sin _) - 300 sin (_) <= 0.5.

We see in the figure, that b - a = 9.276 inches which happens to be

14

the distance between the pivot points of the test section wall and

the model support wall. Since the angles (o(), and_(p) will be

small, sin _) = _) (in radians), and sin _) = (_) (in radians).

Consequently, the first equation of this two part test becomes:

9.276 + 132 (_) - 300 (_) <= 0.5 in.

In programming terms, this becomes:

TEST2(1) = KCL + KLENBD * X - (KLENA * Y).

The value of TEST2(1) is then compared to 0.5, and an alarm was

created if this was less than or equal to 0.5.

Since there are four model support walls (top farside and

nearslde and bottom farside and nearside), this calculation must be

performed four times in order to examine the four possible situa-

tions.

The second criteria of TEST 02 ensures that the leading edges

of the four reentry flaps do not get any closer than 0.5 inches to

the downstream end of the upper and lower test section walls. As

before, this criteria was reduced to 0.5 inches from two inches due

to numerous alarms experienced during shakedown. This portion of

the test was seen to be vastly more complex trigonometrically than

the first part due to the changing lateral distance described by

the reentry flaps and model support walls during movement.

Mathematically, in terms of the symbols of figure 3, the alarm

condition can be expressed as:

YAI - YC <=_0.5 _n. _-

If, at anytime during movement, the left side of the equation

becomes less than or equal to 0.5 inches, the microprocessor must

15

alarm by setting the appropriate relay logic in the sequencer.

Again from figure 3, it can be seen that:

sin (_ - (+_)) = YC/CD

or sin (-I(-_+_)) = YC/CD.

Since sin (-angle) =-sin (angle), we can write:

-sin (-_+_) = YC/CD.

For small angles, sin (-_+_) = (-_+ _), and therefore

Yc = -cD ¢-_+ _).

The above is true for small angles expressed in radians. By

definition (_), was restricted to having negative values of 0 to -

4.5 degrees. Because the voltage from the model support wall

sensor in the tunnel gives a positive voltage, a negative sign is

afixed by way of calibration within the microprocessor.

From the above, CD and (_) are the only two unknowns, but

they were determined as shown below.

By the law of cosines for the triangle CBD in figure 3, we see

that:

CD a - BD & + CB z - 2(BD) (CB) cos (180 - _).

Substituting the constants BD a _ 132 _ = 17424, CB a- 60 z - 3600,

and solving for CD we get:

CD- (lV424 + 3600 - 2(132)(60) cos (180 -_)) I/L

or cD _ (21024 - is840 cos (180 -_))'._

Since cos (180 -_ = -cos (_), the above is expressed as:

cD- (21024+ 15840cos (D_'_

In program variable form, this becomes:

CDX - SQRT (KCDI + KCD2 * INTCOS)

16

where INTCOS - cos (_).

In order to find (_), we used the law of sines which gives:

CD/sin (180- _) = CB/sin (_).

Since CD was determined from above and CB = 60 in.,

(_) _ sin -| (60/CD sin (180 -_))

or (_) - sin -! (60/CD sin (_))

because sin (180 - _) = sin (_). For the top nearside model

support wall, this was written in the program as:

XNTF = *

where KRAD - 0.017432 radians per degree.

The angles (_) and (_) (always negative by definition) are

known and since we can solve for CD and (_) from the above equa-

tions, the only unknown is L. This can be calculated by again

studying figure 3. It is obvious that the distance Xl will change

as a function of the reentry flap and model support wall positions

and consequently so will L.

It remains now only to derive an expression that will take

into account this variation. By looking at the figure, it can

readily be seen that:

tan = L/(432 - Xl)

where X1 - CD cos (-_ - (+_)) = CD cos (-i(_ +_)). Since the

cos (-angle) - cos (angle), X1 - CD cos (_ +_).

Thereforez

L = (432 - CD cos (_+_)) tan (_).

For small (_), the tan (_) = _) (in radians) and the cos (_+_)

1 since (_ + _) is a very small angle. Consequently:

17

L - (432 - CD) (4 (in radians).

Once again from the figure:

YAI = 9.276 - L.

After substituting of L, the above becomes:

YAI = 9.276 - (432 - CD) (4).

Previously, we saw that:

Yc = -cD (-_+_).

Inputting these last two equations into the alarm criteria i.e.

YAI - YC <= 0.5,

we get:

9.276 - (432 - cD) (4) - (-cD (-_+ _)) <= 0.s

or 9.276 + CD (-_+_) - (432 - CD) (_) <= 0.5.

Because the sensors only provide positive voltages, the negative

sign on (_) was introduced inside the microprocessor by way of the

calibration curve. Thus this equation becomes:

9.276 + CD (_+_) - (432- CD) _) <-0.5 in.

In programming terms, this becomes:

TEST2(2) m KCL + CDTF * (X + XNTF) - (KSTA36 - CDTF) * Y

where X, XNTF an Y must be in radians. Since there are top and

bottom test section walls as well as near and farside model support

walls and reentry flaps, this computation was also performed four

separate times.

Figure 7 shows the alarms that have been created to warn of

impending collision of the top and bottom test section walls with

their respective model support walls, and reentry flaps. At the

bottom right of this figure is shown the digital value of 0 0 0 I.

18

The value of one in this position corresponds to setting true of

the alarm logic for "TSWB/MSWBF/REFBF COLLIDE" previously men-

tioned.

In order to ensure that the model support walls are always

within 0.24 degrees of one another, TEST 03 constantly computes the

absolute angular difference between the bottom nearside and farside

model support walls. Additionally, this same absolute difference

is compared to 0.24 degrees for the top nearside and farslde model

support walls. In event that this limit was exceeded, a red

warning message ("MSW NOT IN SYNC") was printed to the screen.

This warning is commonly shared by both bottom and top model

support walls. Figures 8, and 9 show this warning displayed at the

very bottom of the screen. A comparison of the model support walls

present values shows how closely the alarm occurs after exceeding

the 0.24 difference. Additionally, since the third digit in figure

9 is unity, this port was outputting to the sequencer for alarm

action for the bottom walls. Because of a shortage of output

ports, this could not be done for the top model support walls.

• TEST 05 is a simple software check of the two independent side

wall reentry flap positions. The code routinely checks to ensure

that the angles of the side flaps were not less than or equal to

zero degrees. This precludes near and farside flap extension into

the flow stream. Initially, these side flaps were intended to be

used with slotted side walls of the test section. These slotted

walls have not been installed at the NTF, and consequently the side

flap actuators are locked in a safe position and are not normally

19

moved during aerodynamic testing. This test remains in software,

however, for future use. Figure 10 gives the two simulation

warnings obtained in the event of a position violation.

The fundamental objective of TEST 06 was to prevent any

striking or interference between the model arc sector strut and the

top or bottom tunnel model support walls of the test section. The

complexity of this test is best understood by a brief derivation of

these two similar equations. Before undertaking this task, an

understanding of how safety margins for the arc sector, and the

model support walls were determined is necessary. It was known

that the arc sector hydraulic shuttle actuator would require 0.125

seconds to achieve the failsafe position for stopping the arc

sector, and 0.33 seconds would be required for the ladder-logic

sequencer to respond to an interference condition. A i0 percent

margin was added to the sum of these times which yields approxi-

mately 0.5 seconds for halting the interference situation. Since

the arc sector was assumed to travel at 4 degrees per second, 2

degrees (4 deg/sec X 0.5 sec) of pitch margin was desired.

Likewise, a value of 0.15 degrees (0.3 deg/sec X 0.5 sec) was used

for the model support wa!l margin of safety. Reference 7 was used

to obtain a better understanding of the operation of this part of

the program. A plot of model support wall travel versus the arc

sector angular motion (figure 11) along with the designed margins

of safety (dashed-lines) is provided here for clarity. The 0.15

degree MSW offset dictated that the top and bottom MSW/Arc sector

safety lines must be parallel to the inteference lines, and by

20

simply offsetting by this amount the desired margin of safety was

achieved. Additionally, inorder to achieve the maximum pitch

operating range, and larger safety margins for faster movements,

the 2 degree pitch safety margin was included in the arc

sector pump stroker position which is proportional to arc sector

velocity. Therefore, the top and bottom safety margin equations

were derived to be functions of these two offsets as is shown

below.

From figure 11, these are linear equations through the offset

points (Xl,Y1), and (X2,Y2) which can be expressed as:

(Y - Y1)/(Y2 - Yl) = (x - Xl)/(x2 - xl)

where for the top:

X1 = (-11.5 +&_i) X2 = (-10.33 +_*i)

Y1 = (+0.15) Y2 = (-4.5 + 0.15) - -4.35

and for the bottom:

Xl _ (19 -_,) x2 = (15 -_,)

Y1 = (+0.15) Y2 = (-4.5 + 0.15) - -4.35.

By letting X - (_S) (the current arc sector pitch angle, deg), and

Y - (_) (the model support wall angle, deg)

and after considerable algebraic manipulation, the top MSW/Arc

sector safety margin equation becomes:

4.5 (_w -A_r) + 1.17_ = -51.57. (i)

Similarly, the bottom MSW/Arc sector safety equation is:

84.9 (2)

The constants shown above (-51.57 and 84.9) are the values that the

computed left side of equations (1), and (2) were tested against in

21

TEST 06. If at anytime, the left side of equation (i) was less

than or equal to -51.57 or the left side of equation (2) was

greater than or equal to 84.9, then a strut-to-MSW interference

warning was created for the top or bottom respectively. During

real tunnel operations, test section movement would be halted until

the situation is corrected. Figure 12 graphically shows the

physical relationship of the test section hardware to the estab-

lished limits.

While the implementation of this simulation was progressing,

a C of F effort was begun at the NTF. Among the numerous improve-

ments for increased tunnel production was the replacement of the

existing arc sector hydraulic system with a new variable volume

high pressure power pack. Because of this, the swash plate signal

of the old system had to be eliminated. Consequently, a suitable

signal had to be found because TEST 06 software uses the swash

plate signal for its checks. While trying to commission this new

system, data from the spool position was recorded and analyzed.

This signal was found to be free of noise and would require a

minimum of software change in the safety microprocessor so as to

continue to prevent interference between the arc sector and the top

or bottom model support walls. The signal is currently used at the

facility, but has not been incorporated in this simulation until

more on-line experience has been acquired. Figures 13, and 14 show

the red colored alarms for this condition.

TEST 07 consists of a number of simple tests %hat are

particularly interesting to safe tunnel operation. The first of

22

these determines whether current arc sector pitch angle has

exceeded preselected positive or negative pitch thumbwheel limiting

values. A disable switch provides a method whereby the pitch

limits can be ignored so that these limits may be changed while the

tunnel is online. The software to accomplish this has been

included in this simulation. In a similar manner, the calculated

value of tunnel dynamic pressure (Q) was compared against a

preselected thumbwheel value of dynamic pressure. Both dynamic

pressure and pitch thumbwheel limits were introduced into the

simulation by way of the DIO board (H228) that was configured for

input only. Mach number squared was then compared to the square of

the maximum allowable Mach number (1.25). The next part of this

test assesses the voltage status of the strut angle, static

pressure, total pressure, and static pressure range code sensors.

If voltages are not maintained within acceptable upper or lower

bounds, alerts are activated. Figures 15, and 16 are provided to

show these alerts. Attention is now called to the first two unity

digits at the lower right of the figure 15. Both "TUNNEL Q

EXCEEDED" and "STRT THM'WL XEE'ED" have been made to activate

thereby setting the corresponding DIO board (H250) output ports to

one. Figure 16 shows the static pressure sensor voltage range

check on the lower end. A similar check was performed on the upper

end of the sensor, but was not activated nor shown here. Figures

17, and 18 show the upper and lower checks of the static pressure

range switching code that was performed. The switching code must

remain within 3.00 and 4.50 volts so as not to disrupt operations.

23

The numerical values Just to the left of the alarm messages give an

indication of the values creating the alert activation. In either

case, a difference of 0.01 volts has resulted in tripping of the

alarm.

There are two parts to TEST 10. its first part is to

calculate the difference between the upper far side test section

model support wall and the corresponding reentry flap, and compare

that difference to 15.0 degrees. If the difference is greater than

15.0 degrees, then an alarm was directed to the sequencer which

halts operation. This is repeated for the lower near, and far side

reentry flaps as well. Figure 19 shows the reentry flap values to

be set to 15.003, 15.008, 15.006, and 15.009. The small differenc-

es (model support wall angle minus the reentry flap angle) of

0.003, 0.007, 0.005, and 0.009 degrees are causing the alerts of

this condition. The second part of this short test examined the

two upper and two lower reentry flap positions. If the specified

reentry flap position was less than +0.1 degrees, then it was going

into the tunnel slipstream, and was alarmed. Figure 20 is provided

to show the occurrence of these alerts for farside and nearside top

and bottom reentry flaps. The current values of 0.098 were

deliberately set to demonstrate the small difference (0.001) needed

for alarm activation.

The final test (TEST 11) of this program scans the model roll

angle transducer and compared that to ensure that the preselected

roll thumbwheel maximum, and minimum limits (+275 or -95 degrees)

were not exceeded. Inside the tunnel, input sensor data for this

24

test is derived from a highly accurate inductive type roll

resolver. Since this test has not been functional during windtu-

nnel operations, it was not activated or exercised in this simula"

tion. The software, however, has been programmed, and can be

immediately implemented if desired.

System Evaluation

To evaluate the utility of the system, several tunnel

operators were given the opportunity to operate, analyze and

comment on the overall effectiveness, usefulness, and potential of

this system. Generally speaking, all operators responded in the

affirmative that during tunnel operations such a real-time on-line

device would be of benefit especially during the trouble shooting

mode of alarmed conditions. Furthermore, it was indicated that

because of past difficulties in positively identifying safety

operational culprits, latching software should be developed as part

of this effort. At a minimum, this code should provide day/tlme

information am well as hold the troublesome condition on screen

thereby allowing correlation with other corroborating data ensuring

rapid correction. A hardcopy printout of this should be generated

as well. This information should not be deleted from the screen

until operators have properly identified, and are convinced of the

validity of the alert. Only then would resetting of the comput-

er/display be allowed.

In the event that this system is adapted at the NTF, these

suggestions would be given further consideration and certainly

require evaluation during tunnel operations.

25

CONCLUDINGREMARKS

A computer simulation of the safety microprocessor at Langley

Research Center's National Transonic Facility was developed and

verified. The objective of this brief study was to demonstrate the

utillzatlon of a low-cost state-of-the-art high-speed personal

computer combined with digital input/output hardware for computa-

tion of complex tunnel safety algorithms. Software code comprising

this system was checked by employing a setpolnt slgnal generator

which itself was a PC-based device capable of driving the simulator

through its various safety tests. Each alarm/alert check residing

within the code was systematically exercised and verified. A real-

time display was also created which provided operational alarms,

and alerts along with current tunnel equipment positional informa-

tion. As per evaluation by several NTF operators, this display has

potential for providing rapid on-line trouble shooting and warning

capability providing that alarm correlation time is made available

on the dlsplay. Additlonally, operators indicated that the comput-

er/dlsplay must not be reset until the source of the alert could be

positively identified otherwise utility would be lost. This would

necessarily require a latching routine that would hold the alarmed

condition for trouble shooting purposes. Throughout this task, the

PC was found to require relatively little hardware and programming

experience for setup. Additionally, this 386-based computer system

was found to be highly reliable, very accurate, and capable of

extremely high frequency operation (about 50 milliseconds per

26

program cycle).

27

REFERENCES

iO

o

•

0

o

0

Bruce, W. E.: The U. S. National Transonic Facility, Parts I

and II. Special Course on Cryogenic Technology for Wind

Tunnel Testing, AGARD Report No. 722-R, Jul. 1985.

Balakrishna, S., Kilgore, W. A., and Thibodeaux, J. J.:

Control of Large Cryogenic Tunnels, 17th Aerospace Ground

Testing Conference, AIAA paper no. 92-3930, Jul. 1992.

Vigyan Inc.: Kilgore, W. A., and Balakrishna, S.: The NASA

Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel

Microcomputer Controller Source Code, NASA CR-189556, Dec.

1991.

Data Translation Inc.: User Manual for DT-2801 Series, Analog

and Digital I/O Boards for the IBM PC/XT/AT and Compatibles,

Eleventh Edition, Sep. 1991.

Microsoft Corporation: Microsoft QuickBasic (version 4.5)--

Programming in Basic, Document No. 410700014-450-R01-0988,

Copyright 1987, 1988.

Sverdrup ARO, Inc.: Safety Analysis of the National Transonic

Facility Integrated Operations--Microcomputer Software Safety

Report, Jul. 1981.

28

0
mm

_m

E
Ilm

L

0
(/)

0
0
L

0
L

0

WI--

(/)

6
n

L

II IIII1_

LI.

!

1
I
L

•r" .-

29

d
0

-,,-4

4-)
Q)

IM

1/1

,Q
I

U

!

I)i

3O

v

0

(.3
O3

(/)
()3

a)
..4.--,

O3
>

(]3

Or)
!

O3

D')
i--

l.L

I
!

I
!

I
I

I
!

I
!

I<

..o

f

.c

o_
f

3.'!..

a;
t_

4_
Lo

0

_4
e_

°_

r_

ul
°_I
rc_

D
°,--I
ul
c_

!

q_
0
_4

°_I

32

(D

-,.-I
4-}
o,-I
l/}
0

0
-l.J

I>
,.,-I
4J

,-I
¢}
1.4

,-I
,-I
r_

..qO

o_-_4_
o,...t

m
4_1

-

I

(11
1,4

-,-4

33

4_

0
4_

,-4
nJ
>

.Qo

,3o
_-,_4J

°,-I

_o

-

-,

-,-t

34

35

o

o

.

_o

E_
_v

0

t/l I1)
GI

4-1 _t
t/l

0 Ul
4-J ,-_

O_
.aN

_ 0

O_

!

-,..t

36

0

E_

E_
v

o

4o

N

o

u

m

r-4

o

0)

o

o

o

I

37

o

E_
v

0

N

0

o

38

LLI
r't

L_
.J

I--
rr"
0
D.
rt

O0

0

39

40

41

o

_4

-,-I

0

0

cn

o
34
¢0

,-t

o

,-i

,O
o

O_
__o

I

t'_
r-I

tll

42

A

[...
o

u_
F_

v

,---I

,-.I

0
.-,-I

-,-4

I

r-t

(I1
_4

.,,-4
F._

43

44

A

r_
o

r_

v

°,--I

0
O

t-I

f-I

0

4-J
°,-I

I

r-i

QI
14

-,-4

45

t-
o

E_
c_
r_
E_

V

G)

C)

o
rj

4.1
},-.i

,--I

,.-I

o
-,-4
4..I
-H

I

-,.,I

46

04

t14

Q)

0

0"_

0

0
_'H
0-1_

4-_ ",'1

O0

04_
O_

I

-,'-I

47

r-i

i

°

o

'u

mr_
I [._

_ ,,....
G)

O_

0 0

O_

!

d

-,.'4

48

APPENDIX A

Simulation Source Code

49

'BEGIN MICRO 002 SIMULATION

'JAN 25, 1992
'THIS READS IN THE SYSTEM CONSTANTS AND VALUES FROM THE ANALOG-TO-DIGITAL

'CONVERTER AND RETURNS WITH A REAL SET OF DATA.

CLS

CLEAR

SCREEN 9

COLOR 14

'DEFINE THE A/D CONSTANTS

DIM VOLTS, A(8), B(8), C(8), DATA.VALUE(9)

DIM COSX(31), COSY(31), COSSLP(31), ISNX(13), ISNY(13), ISNSLP(13)

COMMAND.WAIT = &H4

WRITE.WAIT = &H2

READ.WAIT = &H5

CSTOP = &HF

CCLEAR = &HI

CADIN = &HC

'NUMBER OF CONVERSIONS

FACTOR# = 32768

RANGE = i0

GAIN = 1

GAIN.CODE = 0

SCALE = RANGE / FACTOR# / GAIN

'DEFINE "INITIAL" PROGRAM CONSTANTS

KCFS = .04256

KCL = 9.276

KLENBD = 132!

KLENA = 300!

KSTA36 = 432!

KBC = 60!

KIS0 = 180!

KCDI = 21024!

KCD2 = 15840!

KQI = .7

KQ2 = i!

KQ3 = .5

K45 = 4.5

KII7 = 1.17

K40 = 4!

RANKIN = 459.67

COSX(1) = 0!

COSX(2) = 3!

COSX(3) = 6!

COSX(4) = 9!

COSX(5) = 12!

COSX(6) = 15!

cosx(7) = 18!
COSX(8) = 21!

COSX(9) = 24!

COSX(10) = 27!

COSX(ll) = 30!

COSX(12) = 33!

COSX(13) = 36!

COSX(14) = 39!

COSX(15) = 42!

cosx(16) = 45!
COSX(17) = 48!

cosx(18) = 51!
5O

COSX(19) = 54!
COSX(20) = 57!
COSX(21) = 60[
COSX(22) = 63!
COSX(23) = 66!
COSX(24) = 69!
COSX(25) = 72!
COSX(26) = 75[
COSX(27) = 78!
cosx(28) = 81!
COSX(29) = 84!

COSX(30) = 87!

cosx(31) = 1E+3o

cosY(l) = 1!
COSY(2) = .99863

cosY(3) = .99452
COSY (4) = .98769

COSY (5) = .97815

COSY (6) = .96593

COSY(7) = .95106

cosY(8) = .93358
COSY(9) = .91355

COSY(IO) = .89101

COSY(II) = .86603

cosY(12) = .83867
COSY(13) = .80902

COSY(14) = .77715

cosY(15) = .74314
COSY(16) = .70711

cosY(17) = .66913
COSY(18) = .62932

COSY(19) = .58779

COSY(20) = .54464

cosY(21) = .5
COSY(22) = .45399

COSY(23) = .40674

COSY(24) = .35837

COSY(25) = .30902

COSY(26) = .25882

COSY(27) = .20791

COSY(28) = .15645

COSY(29) = .10453

COSY(30) = .05234

COSY(31) = IE+30

COSSLP(1) = -4.5682E-04

COSSLP(2) = -.0013692

COSSLP(3) = -.0022779

COSSLP(4) = -.0031802

COSSLP(5) = -.0040739

COSSLP(6) = -.0049564

COSSLP(7) = -.0058254

COSSLP(8) = -.0066783

COSSLP(9) = -.007513

COSSLP(IO) = -.008327

COSSLP(II) = -.0091183

COSSLP(12) = -.0098845

COSSLP(13) = -.010624

COSSLP(14) = -.011334 51

COSSLP(15) = -.012013
COSSLP(16) = -.012659
COSSLP(17) = -.01327
COSSLP(18) = -.013845
COSSLP(19) = -.014382

COSSLP(20) = -.01488

COSSLP(21) = -.015337

COSSLP(22) = -_015751

COSSLP(23) = -.016123

COSSLP(24) = -.01645

COSSLP(25) = -.016733

COSSLP(26) = -.016969

COSSLP(27) = -.017159

COSSLP(28) = -.017302

COSSLP(29) = -.017398

COSSLP(30) = -.017445

COSSLP(31) = i!

ISNX(1) = O!
ISNX(2) = .0349

ISNX(3) = .06976

ISNX(4) = .10453

ISNX(5) = .13917

ISNX(6) = .17365

ISNX(7) = .20791

ISNX(8) = .24192

ISNX(9) = .27564

ISNX(IO) = .30902

ISNX(II) = .34202

ISNX(12) = .37461

ISNX(13) = IE+30

ISNY(1) = 0!

ISNY(2) = 2!

ISNY(3) = 4!

ISNY(4) = 6!

ISNY(5) = 8!

ISNY(6) = i0!

ISNY(7) = 12!

ISNY(8) = 14!
ISNY(9) = 16!

ISNY(10) = 18!

ISNY(II) = 20!

ISNY(12) = 22!

ISNY(13) = IE+30

ISNSLP(1) = 57.307

ISNSLP(2) = 57.378

ISNSLP(3) = 57.517

ISNSLP(4) = 57.729

ISNSLP(5) = 58.013

ISNSLP(6) = 58.371

ISNSLP(7) = 58.805

ISNSLP(8) = 59.32

ISNSLP(9) = 59.917

ISNSLP(10) = 60.6

ISNSLP(II) = 61.375

ISNSLP(12) = 62.247

ISNSLP(13) = I!

52

'DOUBLE SAFETY INTERLOCK VALUE

K6A = .0019531#

KRAD = .017432

'LIMITS

LI0 = .02

L20 = .5

L30 = .24

L50 = 0!

L61 = -51.5745

L62 = 84.9

LI00 = 15!

LIIOA = 275!

LII0 = -95!

JJ = 0

KK = 0

LOCATE 3, 27: PRINT "PRESENT VALUE

LOCATE 4, 2: PRINT "STRUT ANG, DEG:"

LOCATE 4, 45: PRINT "+19.0 -ii.0"

LOCATE 5, 2: PRINT "TSWT POS, DEG:"

LOCATE 5, 46: PRINT "+i.0 -0.5"

LOCATE 6, 2: PRINT "TSWB POS, DEG:"

LOCATE 6, 46: PRINT "+I.0 -0.5"

LOCATE 7, 2: PRINT "MSWTF POS, DEG:"

LOCATE 7, 46: PRINT "+0.0 -4.5"

LOCATE 8, 2: PRINT "MSWTN POS, DEG:"

LOCATE 8, 46: PRINT "+0.0 -4.5"

LOCATE 9, 2: PRINT "MSWBF POS, DEG:"

LOCATE 9, 46: PRINT "+0.0 -4.5"

LOCATE 10, 2: PRINT "MSWBN POS, DEG"

LOCATE i0, 46: PRINT "+0.0 -4.5"

'OMITTED SIDE RENTRY FLAP ZERO TEST

MAX MIN"

LOCATE ii, 2: PRINT "REFTF POS, DEG:"

LOCATE ii, 45: PRINT "415.0 0.0"

LOCATE 12, 2: PRINT "REFTN POS, DEG:"

LOCATE 12, 45: PRINT "+15.0 0.0"

LOCATE 13, 2: PRINT "REFBF POS, DEG:"

LOCATE 13, 45: PRINT "+15.0 0.0"

LOCATE 14, 2: PRINT "REFBN POS, DEG:"

LOCATE 14, 45: PRINT "+15.0 0.0"

LOCATE 15, 2: PRINT "PSTAT(PT2647), PSIA:"

LOCATE 15, 45: PRINT "+57.9 +14.7"

LOCATE 16, 2: PRINT "PTOT(PT2615), PSIA:"

LOCATE 16, 44: PRINT "+135.0 +14.7"

LOCATE 17, 2: PRINT "ROLL ANGLE, DEG:"

LOCATE 17, 44: PRINT "+275.0 -95.0"

LOCATE 18, 2: PRINT "MACH NO.:"

LOCATE 18, 47: PRINT "1.2 0.0"

LOCATE 19, 2: PRINT "TUNNEL Q, PSI:"

LOCATE 19, 44: PRINT " +53.0 0.0"

1 'CONTINUE

'SETUP FOR A-TO-D BOARD "A" (DT2801/5716A). THESE ARE THE "A" VOLTAGES!
BASE.ADDRESS = &H2DC

COMMAND.REGISTER = BASE.ADDRESS + 1

STATUS.REGISTER = BASE.ADDRESS + 1

DATA.REGISTER = BASE.ADDRESS

GOTO I000

53

6 'SETUP FOR A-TO-D BOARD"B" (DT2801/5716A). THESE ARE THE "B" VOLTAGES!
BASE.ADDRESS= &H2EC
COMMAND.REGISTER= BASE.ADDRESS+ 1
STATUS.REGISTER = BASE.ADDRESS+ 1
DATA.REGISTER = BASE.ADDRESS
GOTO2000

I0 'SETUP FOR A-TO-D BOARD"C" (DT2801/5716A). THESE ARE THE "C" VOLTAGES!
BASE.ADDRESS= &H2F4
COMMAND.REGISTER= BASE.ADDRESS+ 1
STATUS.REGISTER = BASE.ADDRESS+ 1
DATA.REGISTER = BASE.ADDRESS
GOTO3000

15 'CONVERSIONTO ENGINEERING UNITS
'BOARD "A", A(1) THRU A(8) , &H2DC (BASE.ADDRESS)
'A(1) IS GUIDE VANE ANGLE--ZT-2012
'A(2) IS STRUT POSITION--ZT-1603A
'A(3) IS PUMPSWASHPLATE--ZT-1602
'A(4) IS TSWTOP POSITION--ZT-1821
'A(5) IS TSW BOTTOMPOSITION--ZT-1861
'A(6) IS MSWTOP FS POSITION--ZT-1501
'A(7) IS MSWTOP NS POSITION--ZT-1401
'A(8) IS MSWBOTTOMFS POSITION--ZT-1521

'BOARD "B", B(1) THRU B(8) , &H2EC (BASE.ADDRESS)
'B(1) IS MSWBOTTOMNS POSITION--ZT-1421
'B(2) IS REF TOP FS POSITION--ZT-1541
'B(3) IS REF TOP NS POSITION--ZT-1441
'B(4) IS REF SIDE FS POSITION--ZT-1581
'B(5) IS REF SIDE NS POSITION--ZT-1481
'B(6) IS REF BOTTOM FS POSITION--ZT-1561

'B(7) IS REF BOTTOM Ns POSITION--ZT-1461

'B(8) IS STRUT LIMIT ARMED (DISABE)--HS-4603

'BOARD "C", C(1) THRU C(8), &H2F4 (BASE.ADDRESS)

'C(1) IS PRESSURE (STATIC SIGNAL)--PT-2647

'C(2) IS TOTAL PRESSURE PO--PT-2615

'C(3) IS PRESSURE (STATIC RANGE CODE)--PT-2647

'!!!!!!!!][l!!!!!!!!!!!!!!!!![!!!!!!!!!!!!!]!!

'CONVERT THE A,B, & C VOLATGE VALUES TO REAL NUMBERS

XGVAX = A(1) * (6.13933) + .18551

XSTRUT = A(2) * (-3.3113) + 19.4982

LOCATE 4, 28: PRINT USING "(###.###)"; XSTRUT

XPSP = A(3) * 204.7

ALPHAT = A(4) * (.165) - .6

LOCATE 5, 28: PRINT USING "(###.###)"; ALPHAT

ALPHAB = A(5) * (.165) - .6

LOCATE 6, 28: PRINT USING "(###.###)"; ALPHAB

BETATF = A(6) * (-.49) + .2

LOCATE 7, 28: PRINT USING "(##.###)"; BETATF

BETATN = A(7) * (-.49) + .2

LOCATE 8, 28: PRINT USING "(##.###)"; BETATN

BETABF = A(8) * (-.49) + .2

LOCATE 9, 28: PRINT USING "(##.###)"; BETABF

BETABN = B(1) * (-.49) + .2

LOCATE i0, 28: PRINT USING "(##.###)"; BETABN

54

GAr,;.ATF= B(2) * (1.57) -.2
LOCATE ii, 28: PRINT USING "(##.###)"; GAMATF
GAMATN= B(3) * (1.57) -.2
LOCATE 12, 28: PRINT USING "(##.###)"; GAMATN

'THESE ARE COMMENTED OUT SINCE THEY ARE NOT USED!!!!

'GAMAFS = B(4) * (1.57) -.2

'GAMANS = B(5) * (1.57) -.2

'PRINT USING "GAMAFS IS ####.###"; GAMAFS

'PRINT USING "GAMANS IS ####.###"; GAMANS

GAMABF = B(6) * (1.57) - .2

LOCATE 13, 28: PRINT USING "(##.###)"; GAMABF

GAMABN = B(7) * (1.57) -.2

LOCATE 14, 28: PRINT USING "(##.###)"; GAMABN

DISABE = B(8)

'RANGE SELECT VOLTAGE FOR PT-2647 (STATIC PRESSURE)

OLDRGI = RANGE1

RANGE1 = C(3)

CHGI = RANGE1 - OLDRGI

SKIP1 = TRUE

IF (ABS(CHGI) < .i) THEN
SKIP1 = FALSE

END IF

'IF AUTORANGEING IN PROGRESS, SKTP PRESSURE UPDATE FOR 3 SECONDS

IF (SKIP1) THEN

CNTI = 1

END IF

'RESET cOUNTER ON POWERUP AND DELAY (2.5 SEC'S)

IF ((CNTI > 0) AND (CNTI < 25)) THEN
CNTI = CNTI + 1

ELSEIF ((CNTI >= 25) OR (CNTI < 0)) THEN
CNTI = 0

END IF

IF (CNTI <> 0) GOTO i00

'DETERMINE RANGE FOR PSTAT

IF RANGE1 <= 3.5 THEN

PSTAT = C(1) * 1.5

ELSEIF ((RANGE1 > 3.5) AND (RANGE1 <= 4!)) THEN

PSTAT = C(1) * 4.5

ELSEIF ((RANGE1 > 4)) THEN

PSTAT = C(1) * 15X
END IF

LOCATE 15, 28: PRINT USING "(###.###)"; PSTAT

i00 'CONTINUE

'TOTAL PRESSURE FROM PT-2615

XPRES = C(2) * 29.963 - .134

LOCATE 16, 28: PRINT USING "(###.###)"; XPRES

GOTO I01

i000 'ANALOG TO DIGITAL CONVERSION SUBROUTINE.

'CHECK FOR LEGAL STATUS REGISTER

STATUS = INP(STATUS.REGISTER)

IF NOT ((STATUS AND &H70) = 0) THEN

BOARD A--"A'S".

55

GOTO50OO
ELSE
GOTO5001

END IF

5001 'STOP AND CLEAR THE DT-2S01/_716A BOARD

OUT COMMAND.REGISTER, CSTOP

TEMP = INP(DATA.REGISTER)

WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

WAIT STATUS.REGISTER, COMMAND.WAIT

OUT COMMAND.REGISTER, CCLEAR

FOR I = 1 TO 8

CHANNEL = I - 1

'WRITE READ A/D IMMEDIATE COMMAND

WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

WAIT STATUS.REGISTER, COMMAND.WAIT

OUT COMMAND.REGISTER, CADIN

'WRITE A/D GAIN BYTE

WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

OUT DATA.REGISTER, GAIN.CODE

'WRITE A/D CHANNEL BYTE

WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

OUT DATA.REGISTER, CHANNEL

'READ TWO BYTES OF A/D DATA FROM THE DATA OUT REGISTER AND

'COMBINE THE TWO BYTES INTO ONE WORD.

WAIT STATUS.REGISTER, READ.WAIT

LOW = INP(DATA.REGISTER)

WAIT STATUS.REGISTER, READ.WAIT

HIGH = INP(DATA.REGISTER)
DATA.VALUES = HIGH * 256 + LOW

'LOCATE 21, 60: PRINT USING "########.#"; DATA.VALUE#

IF DATA.VALUE# > 32767 THEN

DATA.VALUES = DATA.VALUE# - 65536

ELSE

GOTO 5002

END IF

5002 'CONTINUE

3 ' CALCULATE THE A/D READING IN VOLTS

'VOLTS #= (RANG E* DATA. VALUES / FACTORS /GA IN)

VOLTS# = SCALE * DATA.VALUES

A(I) = VOLTS#

'LOCATE i, i: PRINT USING "###.###"; A(1)

'LOCATE i, i0: PRINT USING "###.###"; A(2)

'LOCATE i, 20: PRINT USING "###.###"; A(3)

'LOCATE i, 30: PRINT USING "###.###"; A(4)

'LOCATE i, 40: PRINT USING "###.###"; A(5)

'LOCATE i, 50: PRINT USING "###.###"; A(6)

'LOCATE i, 60: PRINT USING "###.###"; A(7)

'LOCATE i, 70: PRINT USING "###.###"; A(8)

IF (I = 8) THEN
GOTO 5

ELSE

GOTO 4

END IF

4 NEXT I
56

5 GOTO6

2000 'ANALOG TO DIGITAL CONVERSIONSUBROUTINE.
'CHECK FOR LEGAL STATUSREGISTER
STATUS= INP(STATUS.REGISTER)
IF NOT ((STATUS AND &H70) = 0) THEN

GOTO5000
ELSE
GOTO7
END IF

7 'STOP AND CLEAR THE DT-2801/5716A BOARD
OUT COMMAND.REGISTER,CSTOP
TEMP= INP(DATA.REGISTER)
WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT
WAIT STATUS.REGISTER, COMMAND.WAIT
OUT COMMAND.REGISTER,CCLEAR
FOR I = 1 TO 8
CHANNEL= I - 1

'WRITE READ A/D IMMEDIATE COMMAND
WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

WAIT STATUS.REGISTER, COMMAND.WAIT

OUT COMMAND.REGISTER, CADIN

'WRITE A/D GAIN BYTE
WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

OUT DATA.REGISTER, GAIN.CODE

'WRITE A/D CHANNEL BYTE
WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

OUT DATA.REGISTER, CHANNEL

'READ TWO BYTES OF A/D DATA FROM THE DATA OUT REGISTER, AND

'COMBINE THE TWO BYTES INTO ONE WORD

WAIT STATUS.REGISTER, READ.WAIT

LOW = INP(DATA.REGISTER)

WAIT STATUS.REGISTER, READ.WAIT

HIGH = INP(DATA.REGISTER)

DATA.VALUE# = HIGH * 256 + LOW

IF DATA.VALUE# > 32767 THEN

DATA.VALUE# = DATA.VALUE# - 65536

ELSE

GOTO 8

END IF

BOARD B--" B 'S".

8 'CONTINUE

9 'CALCULATE THE A/D READINGS IN VOLTS

'VOLTS# = (RANGE * DATA.VALUE# / FACTOR# / GAIN)

VOLTS# = SCALE * DATA.VALUE#

B(I) = VOLTS#

'LOCATE 2, i: PRINT USING "###.###"; B(1)

'LOCATE 2, i0: PRINT USING "###.###"; B(2)

'LOCATE 2, 20: PRINT USING "###.###"; B(3)

'LOCATE 2, 30: PRINT USING "###.###"; B(4)

'LOCATE 2, 40: PRINT USING "###.###"; B(5)

'LOCATE 2, 50: PRINT USING "###.###"; B(6)

'LOCATE 2, 60: PRINT USING "###.###"; B(7)

'LOCATE 2, 70: PRINT USING "###.###"; B(8)

IF (I = 8) THEN
57

GOTOi0
ELSE
GOTOII
END IF

II NEXT I

3000 'ANALOG TO DIGITAL CONVERSIONSUBROUTINE.
'CHECK FOR LEGAL STATUS REGISTER
STATUS= INP(STATUS.REGISTER)
IF NOT ((STATUS AND &H70) = 0) THEN

GOTO 5000

ELSE

GOTO 12

END IF

12 'STOP AND CLEAR THE DT-2801/5716A BOARD

OUT COMMAND.REGISTER, CSTOP

TEMP = INP(DATA.REGISTER)

WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

WAIT STATUS.REGISTER, COMMAND.WAIT

OUT COMMAND.REGISTER, CCLEAR

FOR I = 1 TO 3

CHANNEL = I - i

BOARD C--"C'S".

'WRITE READ A/D IMMEDIATE COMMAND

WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

WAIT STATUS.REGISTER, COMMAND.WAIT

OUT COMMAND.REGISTER, CADIN

'WRITE A/D GAIN BYTE
WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

OUT DATA.REGISTER, GAIN.CODE

'WRITE A/D CHANNEL BYTE
WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

OUT DATA.REGISTER, CHANNEL _ :_

'READ TWO BYTES OF A/D DATA FROM THE DATA OUT REGISTER, AND COMBINE

'THE TWO BYTES INTO ONE WORD

WAIT STATUS.REGISTER, READ.WAIT

LOW = INP(DATA.REGISTER)

WAIT STATUS.REGISTER, READ.WAIT

HIGH = INP(DATA.REGISTER)

DATA.VALUE# = HIGH * 256 + LOW

IF DATA.VALUE# > 32767 THEN

DATA.VALUES = DATA.VALUE# - 65536

ELSE

GOTO 13

END IF

13 'CONTINUE

14 'CALCULATE THE A/D READINGS IN VOLTS

'VOLTS #= (RANG E* DATA. VALUE# /FACTOR#/GAi N)

VOLTS# = SCALE * DATA.VALUE#

C(I) = VOLTS#

'LOCATE 3, i: PRINT USING "###.##"; C(1)

'LOCATE 3, i0: PRINT USING "###.##"; C(2)

'LOCATE 3, 20: PRINT USING "###.##"; C(3)

IF (I = 3) THEN

GOTO 15
ELSE

GOTO 16

58

END I F
16 NEXT I

5000 'ILLEGAL STATUSREGISTER
PRINT
PRINT "FATAL ERROR-ILLEGAL STATUSREGISTERVALUE!"
PRINT "STATUS REGISTERVALUE IS"; HEX$(STATUS); "HEXIDECIMAL"
PRINT : BEEP: BEEP
END
'NEED TO RESET WATCHDOGTO KEEP FROMTIMING OUT. THIS IS NOT USED IN
'THIS SIMULATION, BUT INSERTED TO KEEP IN PARALLEL WITH OLD MICRO
'SUBROUTINE "RELAYS". WILL BE ADDEDLATER, BUT FOR NOWWILL PRINT TO
'THE SCREENFOR RELAYS.
'CALL RELAYS

I01 'CONTINUE
'DIAL5 SUBROUTINE---THIS READS IN THE SETTING OF FIVE DIFFERENT THUMBWHEEL
'SWITCHES AND CONVERTSTHE SETTINGS TO REAL NUMBERVALUES USING THE
'DT-2817 BOARDSWITH FOUR DIGITAL I/O PORTSPER BOARD

'DEFINE THE DIGITAL I/O CONSTANTS---SEE "DT-2817 USER MANUAL"
'CONTROL REGISTER WITH FACTORYBASE ADDRESS
CONTROL.REGISTER% = &H228

'INPUT PORT ADDRESSES

DATA.PORT0 = &H229

DATA.PORT1 = &H22A

DATA.PORT2 = &H22B

DATA.PORT3 = &H22C

'ALL PORTS SET FOR INPUTS (&H0=0000)

OUT CONTROL.REGISTER%, &H0

'READ THE INPUT PORTS

PORT.VALUE.READ0 = INP(DATA.PORTO)

PORT.VALUE.READ1 = INP(DATA.PORTI)

PORT.VALUE.READ2 = INP(DATA.PORT2)

PORT.VALUE.READ3 = INP(DATA.PORT3)

DATA.VALUE(l) = PORT.VALUE.READ0 / i0

DATA.VALUE(2) = PORT.VALUE.READ1

DATA.VALUE(3) = DATA.VALUE(l) + DATA.VALUE(2)

DATA.VALUE(4) = PORT.VALUE.READ2

DATA.VALUE(5) = PORT.VALUE.READ3
'THIS IS THE SIMULATED DIALED-IN THUMBWHEEL VALUE FOR XQDIAL!

XQDIAL = DATA.VALUE(3)

'LOCATE 20, 27: PRINT USING "####.####"; XQDIAL
'THIS IS THE SIMULATED DIALED-IN THUMBWHEEL VALUES FOR THE

'POSITIVE AND NEGATIVE PITCH LIMITS---XSTRDP & XSTRDM

XSTRDP = DATA.VALUE(4)

XSTRDM = (-i) * DATA.VALUE(5)

'LOCATE 21, 54: PRINT USING "+###.#"; XSTRDP

'LOCATE 20, 55: PRINT USING "###.#"; XSTRDM

GOTO 6001

6001 'CONTINUE

XROLDP = 275!

XROLDM = -95!

'PRINT USING "XROLDM IS ###.##"; XROLDM

'PRINT USING "XROLDP IS ###.##"; XROLDP

'ENCDIN SUBROUTINE---THIS READS IN THE SETTINGS OF THE MODEL ROLL

59

'A_IGLE (IN A FIVE CHARACTORBCDCODEFROMDIO PORTS). FORNOWSET
'ROL TO A VALUE.
'ROL = D(2) * i0000 + D(3) * i000 + D(4) * i00 + D(5) * I0 ÷ D(6)
'ANGLE = (ROL / i00) - 35.4
ANGLE = 0!

LOCATE 17, 28: PRINT USING "(###.###)"; ANGLE

'CALCD SUBROUTINE(GAMATF, CDTF, IC(1))---THIS CALCULATES THE RADIUS ARM "CD" (LE
'FLAP TIP TO MODEL SUPPORT WAL PIVOT FOR TOP AND BOTTOM REF'S) AS A FUNCTION

'OF THE RENTRY FLAP ANGLE, GAMA FOR TOP AND BOTTOM REF'S.

DAT = GAMATF

'BEGIN INDEX SUB

J = 15 'THIS IS IC(1)

IF DAT >= COSX(J) THEN

2001 'CONTINUE

IF DAT >= COSX(J + I) THEN
J = J + 1

GOTO 2001

END I F

ELSE

3001 'CONTINUE

IF J = 1 THEN GOTO 201

J = J - 1

IF DAT < COSX(J) THEN GOTO 3001
END I F

'END INDEX SUB

201 INTCOS = COSY(J) + (GAMATF - COSX(J)) * COSSLP(J)

CDTF = SQR(KCDI + KCD2 * INTCOS)

'CALCD SUBROUTINE (GAMATN, CDTN, IC(1))

DAT = GAMATN

'BEGIN INDEX SUB

J = 15 'THIS IS IC(1)

IF DAT >= COSX(J) THEN
202 'CONTINUE

IF DAT >= COSX(J + I) THEN
J = J + 1

GOTO 202

END IF

ELSE

203 'CONTINUE

IF J = 1 THEN GOTO 204

J = J - 1

IF DAT < COSX(J) THEN GOTO 203
END IF

'END INDEX SUB

204 INTCOS = COSY(J) + (GAMATN - COSX(J)) * COSSLP(J)

CDTN = SQR(KCDI + KCD2 * INTCOS)

'CALCD SUBROUTINE (GAMABF, CDBF, It(2))
DAT = GAMABF

'BEGIN INDEX SUB

J _ 15'THIS IS IC(2)

IF DAT >= COSX(J) THEN
4001 'CONTINUE

IF DAT >= COSX(J + i) THEN
J=J+l

GOTO 4001

END IF

ELSE

60

5003 'CONTINUE
IF J = 1 THEN GOTO303
J = J - 1
IF DAT < COSX(J) GOTO5003
END IF
'END INDEX SUB

303 INTCOS = COSY(J) + (GAMABF- COSX(J)) * COSSLP(J)
CDBF = SQR(KCDI + KCD2 * INTCOS)

'CALCD SUBROUTINE
DAT = GAMABN

(GAMABN, CDBN, IC(2))

'BEGIN INDEX SUB
J = 15 'THIS IS IC(2)
IF DAT >= COSX(J) THEN

304 'CONTINUE
IF DAT >= COSX(J + i) THEN
J = J + 1
GOTO304
END IF

ELSE
305 'CONTINUE

IF J = 1 THEN GOTO306
J = J - 1
IF DAT < COSX(J) THEN GOTO305

END IF
'END INDEX SUB

306 INTCOS = COSY(J) + (GAMABN- COSX(J)) * COSSLP(J)
CDBN= SQR(KCDI + KCD2 * INTCOS)

'CALN SUBROUTINE (GAMATF, NTF, XNTF, CDTF, IC(3), IS(l))
'THIS CALCULATESTHE ANGLE "NU" FORMEDBY THE MODEL
'SUPPORT WALL AND THE RADIUS ARMS CDTF, CDTN, CDBF, AND CDBN
DAT = 90! - GAMATF

'BEGIN INDEX SUBROUTINE
J = 15 'THIS IS IC(3)

IF DAT >= COSX(J) THEN
8000 'CONTINUE

IF DAT >= COSX(J + i) THEN

J = J + 1

GOTO 8000

END IF

ELSE

8002 'CONTINUE

IF J = 1 THEN GOTO 8001

J = J - 1

IF DAT < COSX(J) THEN GOTO 8002
END I F

'END INDEX SUBROUTINE

8001 INTCOS = COSY(J) + (DAT - COSX(J))

DAT = 60! * INTCOS / CDTF
'BEGIN INDEX SUBROUTINE

J = 5 'THIS IS IS(l)

IF DAT >= ISNX(J) THEN
8003 'CONTINUE

IF DAT >= ISNX(J + i) THEN
J = J + 1

GOTO 8003

END I F

ELSE

8005 'CONTINUE

* COSSLP(J)

61

IF J = 1 THEN GOTO8004
J=J-i
IF DAT < ISNX(J) THEN GOTO8005

END IF
'END INDEX SUBROUTINE

8004 NTF = ISNY(J) + (DAT - ISNX(J)) * ISNSLP(J)
XNTF = NTF * KRAD

'CALN SUBROUTINE(GAMATN, NTN, XNTN, CDTN, IC(3), IS(I))
DAT = 90! - GAMATN

'BEGIN INDEX SUB
J = 15 'THIS IS IC(3)
IF DAT >= COSX(J) THEN

8006 'CONTINUE
IF DAT >= COSX(J + i) THEN
J = J + 1
GOTO8006
END IF

ELSE
8007 'CONTINUE

IF J = 1 THEN GOTO8008
J = J - 1
IF DAT < COSX(J) THEN GOTO8007

END IF
'END INDEX SUB

8008 INTCOS = COSY(J) + (DAT - COSX(J)) * COSSLP(J)
DAT = 60! * INTCOS / CDTN

'BEGIN INDEX SUB

J = 5 'THIS IS IS(1)

IF DAT >= ISNX(J) THEN

8009 'CONTINUE

IF DAT >= ISNX(J + i) THEN

J = J + 1

GOTO 8009

END IF

ELSE

8010 'CONTINUE

IF J = 1 THEN GOTO 8011

J = J - 1

IF DAT < ISNX(J) THEN GOTO 8010

END I F

'END INDEX SUB

8011 NTN = ISNY(J) + (DAT - ISNX(J)) * ISNSLP(J)

XNTN = NTN * KRAD

'CALN SUBROUTINE (GAMABF, NBF, XNBF, CDBF, IC(5), IS(3))

DAT = 90! - GAMABF

'BEGIN INDEX SUB

J = 15 'THIS IS IC(5)

IF DAT >= COSX(J) THEN

8012 'CONTINUE

IF DAT >= COSX(J + I) THEN

J = J + 1

GOTO 8012

END IF

ELSE

8013 'CONTINUE

IF J = 1 THEN GOTO 8014

J = J - 1

IF DAT < COSX(J) THEN GOTO 8013

62

END IF
'END INDEX SUB

8014 INTCOS = COSY(J) + (DAT - COSX(J)) * COSSLP(J)
DAT = 60! * INTCOS / CDBF

'BEGIN INDEX SUB

J = 5 'THIS IS IS(3)

IF DAT >= ISNX(J) THEN

8015 'CONTINUE

IF DAT >= ISNX(J + i) THEN
J=J+l

GOTO 8015

END IF

ELSE

8016 'CONTINUE

IF J = 1 THEN GOTO 8017

J = J - 1

IF DAT < ISNX(J) THEN GOTO 8016
END IF

'END INDEX SUB

8017 NBF = ISNY(J) + (DAT - ISNX(J)) * ISNSLP(J)
XNBF = NBF * KRAD

'CALN SUBROUTINE (GAMABN, NBN, XNBN, CDBN, IC(5), IS(3))
DAT = 90! - GAMABN

'BEGIN INDEX SUB

J = 15 'THIS IS IC(5)

IF DAT >= COSX(J) THEN

8018 "CONTINUE

IF DAT >= COSX(J + i) THEN
J = J + 1

GOTO 8018

END IF

ELSE

8019 'CONTINUE

IF J = 1 THEN GOTO 8020

J = J - 1

IF DAT < COSX(J) THEN GOTO 8019

END IF

'END INDEX SUB

8020 INTCOS = COSY(J) + (DAT - COSX(J)) * COSSLP(J)

DAT = 60! * INTCOS / CDBN

'BEGIN INDEX SUB

J = 5 'THIS IS IS(3)

IF DAT >= ISNX(J) THEN

8021 'CONTINUE

IF DAT >= ISNX(J + i) THEN

J = J + 1

GOTO 8021

END IF

ELSE

8022 'CONTINUE

IF J = 1 THEN GOTO 8023

J = J - 1

IF DAT < ISNX(J) THEN GOTO 8022

END IF

'END INDEX SUB

8023 NBN = ISNY(J) + (DAT - ISNX(J)) * ISNSLP(J)

XNBN = NBN * KRAD

'MACHIN SUBROUTINE---CALCULATE THE TUNNEL MACH NUMBER

63

PRATO= XPRES / PSTAT

IF (PRATO < I!) THEN
GOTO 24

ELSE

GOTO 25

END IF

24 PRATO = i!

25 MACHSQ = (5! * (PRATO ^ .28571 - i!))

'PRINT USING "PRATO IS ####.###"; PRATO

MACH = SQR(MACHSQ)

LOCATE 18, 28: PRINT USING "(##.###)"; MACH

'CALQ SUBROUTINE---CALCULATE THE OPERATIONAL TUNNEL "Q" FROM THE

'COMPUTED MACH NUMBER AND THE MEASURED PRESSURE

QCOMP = XPRES * (KQI * MACHSQ / (i! + .2 * MACHSQ) ^ 3.5)

LOCATE 19, 28: PRINT USING "(###.###)"; QCOMP

'PERFORM THE INTERLOCK TESTS

'TEST 01---THIS ROUTINE TESTS TO ENSURE THAT THE TOP AND BOTTOM

'TEST SECTION WALLS ARE BOTH WITHIN +,- 0.02 DEGREES OF THEIR ZERO

'POSITION BEFORE "PERMISSION" IS GRANTED TO INSERT OR REMOVE
'THE MODEL ACCESS HOUSINGS. NO INTERFERENCE ALLOWED. IF BOTH TOP

'AND BOTTOM WALLS ARE WITHIN LIMIT, THE "PERMISSIVE" SEQUENCER RELAY

'IS DRIVEN.

'COMPARE THE TSW TOP AND BOTTOM ANGLES WIT}{ THEIR LIMIT AND SET

'FLAG FOR SEQUENCER OUTPUT TRUE IF ALPHA (TSW) TOP OR BOT
'IS >= +0.02 OR <= -0.02. LIO = 0.02

IF (ALPHAT >= LI0) THEN

FLAG25(3) = 0

GOTO 26

ELSE

FLAG25(3) = 1

GOTO 555

END IF

26 COLOR 12

LOCATE 5, 45: PRINT "TSWT>= PLUS ZERO LIM"
LL = 1

GOTO 27

555 COLOR 14

IF (LL = I) THEN
GOTO 271

ELSE

GOTO 27

END IF

271 LOCATE 5, 45: PRINT "
LL = 0

LOCATE 5, 46: PRINT "+i.0 -0.5"

27 IF (ALPHAT <= -LI0) THEN

FLAG25(3) = 0
GOTO 28

ELSE

FLAG25(3) = 1

GOTO 301

END IF

28 COLOR 12

LOCATE 5, 45: PRINT "TSWT<= NEG ZERO LIM"

LLL = 1

64

GOTO29
301 COLOR14
IF (LLL = i) THEN

GOTO302
ELSE
GOTO29
END IF

302 LOCATE 5, 45: PRINT "
LLL = 0
LOCATE 5, 46: PRINT "+i.0 -0.5"
29 IF (ALPHAB >= LI0) THEN

FLAG25(3) = 0
GOTO30
ELSE
FLAG25(3) = 1
GOTO3ii
END IF

30 COLOR12
LOCATE 6, 45: PRINT "TSWB>= PLUS ZEROLIM"
LLLL = 1
GOTO32
311 COLOR14

IF (LLLL = i) THEN
GOTO312
ELSE
GOTO32
END IF

312 LOCATE 6, 45: PRINT "
LLLL = 0

LOCATE 6, 46: PRINT "+i.0 -0.5"
GOTO32

32 IF (ALPHAB <= -LI0) THEN
FLAG25(3) = 0
GOTO361
ELSE
FLAG25(3) = 1
GOTO362
END IF

361 COLOR12
LOCATE 6, 45: PRINT "TSWB<= NEG ZEROLIM"
LLLLL = 1
GOTO364
362 COLOR14

IF (LLLLL = i) THEN
GOTO363
ELSE
GOTO364
END IF

363 LOCATE 6, 45: PRINT "
LLLLL = 0

LOCATE 6, 46: PRINT "+i.0 -0.5"

364 'CONTINUE

'TEST 02 SUBROUTINE (ALPHAT, BETATF, XNTF, CDTF, FLAG24(1))
'THIS ROUTINE TESTS THE DISTANCES BETWEEN DIFFERENT

'WALL SECTIONS TO ENSURE AGAINST WALLS COLLIDING. THE TEST HAS TWO

'SEPARATE PARTS WHICH MUST BE SATISFIED.

'TEST 2.1---ENSURES THAT THE DISTANCE BETWEEN THE TSW AND MSW IS > = 0.5

'INCHES.

65

'TEST 2.2---ENSURES THAT THE DISTANCE BETWEEN THE TSW AND REF IS >= 0.5

'INCHES. IF EITHER PART IS NOT SATISFIED, PRINT A MESSAGE.

FLAG24 (I) = 0
X = BETATF * KRAD

Y = ALPHAT * KRAD

'TEST SECTION WALL TOP-MODEL SUPPORT WALL TOP FAR SIDE. L20=0.5!

TEST2(1) = KCL + KLENBD * X - (KLENA * Y)

TEST2(2) = KCL + CDTF * (X + XNTF) - (KSTA36 - CDTF) * Y

'LOCATE 20, 2: PRINT USING "(####.##)"; TEST2(1)

'LOCATE 20, 12: PRINT USING "(####.##)"; TEST2(2)

'IF THE TEST VALUE IS LESS THAN ITS LIMIT PRINT TO SCREEN (SET A FLAG LATER)

IF ((TEST2(1) <= L20) OR (TEST2(2) <= L20)) THEN

FLAG24(1) = 1
COLOR 12

LOCATE 21, 2: PRINT "TSWT/MSWTF/REFTF COLLIDE"
GOTO 368

ELSE

GOTO 369

369 COLOR 14

LOCATE 21, 2: PRINT " "
END IF

368 'CONTINUE

'TEST 02 SUBROUTINE (ALPHAT, BETATN, XNTN, CDTN, FLAG24(1))

FLAG24(1) = O
X = BETATN * KRAD

Y = ALPHAT * KRAD

TEST2(1) = KCL + KLENBD * X - (KLENA * Y)

TEST2(2) = KCL + CDTN * (X + XNTN) - (KSTA36 - CDTN) * Y

'LOCATE 20, 2: PRINT USING "(####.##)"; TEST2(1)

'LOCATE 20, 12: PRINT USING "(####.##)"; TEST2(2)
'IF THE TEST VALUE IS LESS THAN ITS LIMIT PRINT TO SCREEN

IF ((TEST2(1) <= 520) OR (TEST2(2) <= L20)) THEN

FLAG24(1) = 1
COLOR 12

LOCATE 22, 2: PRINT "TSWT/MSWTN/REFTN COLLIDE"
GOTO 366

ELSE

GOTO 367

END IF

367 COLOR 14

LOCATE 22, 2: PRINT " "
366 'CONTINUE

'TEST 02 SUBROUTINE (ALPHAB, BETABF, XNBF, CDBF, FLAG24(3))

FLAG24(3) = 0
X = BETABF * KRAD

Y = ALPHAB * KRAD

'TEST SECTION WALL BOTTOM- MODEL SUPPORT WALL BOTTOM FAR

TEST2(1) = KCL + KLENBD * X - (KLENA * Y)

TEST2(2) = KCL + CDBF * (X + XNBF) - (KSTA36 - CDBF) * Y

'LOCATE 20, 2: PRINT USING "(####.##)"; TEST2(1)

'LOCATE 20, 12: PRINT USING "(####.##)"; TEST2(2)

IF TEST2(1) <= L20 OR TEST2(2) <= L20 THEN

FLAG24(3) = 1

66

COLOR12
LOCATE 23, 2: PRINT "TSWB/MSWBF/REFBFCOLLIDE"
GOTO371

ELSE

GOTO 372

END IF

372 COLOR 14

LOCATE 23, 2: PRINT "
371 'CONTINUE

'TEST 02 SUBROUTINE (ALPHAB, BETABN, XNBN, CDBN, FLAG24(3))

FLAG24(3) = 0
X = BETABN * KRAD

Y = ALPHAB * KRAD

TEST2(1) = KCL + KLENBD * X - (KLENA * Y)

TEST2(2) = KCL + CDBN * (X + XNBN) - (KSTA36 - CDBN) * Y

'LOCATE 20, 2: PRINT USING "(####.##)"; TEST2(1)

'LOCATE 20, 12: PRINT USING "(####.##)"; TEST2(2)

IF TEST2(1) <= L20 OR TEST2(2) <= L20 THEN

FLAG24(3) = 1
TMR = 1

COLOR 12

LOCATE 20, 25: PRINT "TSWB/MSWBN/REFBN COLLIDE"

GOTO 373

ELSE

GOTO 374

END IF

374 COLOR 14

LOCATE 20, 25: PRINT " "

TMR = 0

373 'CONTINUE

'TEST 03 SUBROUTINE---THIS ROUTINE TESTS TO SEE IF

' (I) NS AND FS BTM MSW ARE IN SYNC

' (2) NS AND FS TOP MSW ARE IN SYNC

'CALCULATE THE ABSOLUTE DIFFERENCE IN NEAR AND FAR ANGLES--COMPARE

'THE DIFFERENCE WITH THE LIMIT AND SET THE FLAG TRUE IF THE LIMIT IS

'EXCEEDED. L30=0.24!

IF (ABS(BETABN - BETABF) >= L30) THEN
BMSWS = 1

ELSE

BMSWS = 0

END IF

IF (ABS(BETATN - BETATF) >= L30) THEN

TMSWS = 1

ELSE

TMSWS = 0

END IF

IF (BMSWS OR TMSWS) THEN

FLAG24(4) = 1

GOTO 44

ELSE

FLAG24 (4) = 0
GOTO 441

END IF

44 COLOR 12

LOCATE 21, 31: PRINT "MSW NOT IN SYNC"

GOTO 45

441 COLOR 14

67

LOCATE21, 31: PRINT " "
45 'CONTINUE

'TEST 05 SUBROUTINE---THIS ROUTINE TESTS TO ENSURETHAT THE ANGLEOF THE
'SIDE RENTRYFLAPS ARE NOT LESS THAN OR EQUALTO 0.0 DECREES. IF EITHER
'OF THE SIDE RENTRYFLAP POSITIONS IS 0 OR NEGATIVE, A FLAG IS SET FOR
'OUTPUT TO THE SIDE WALL INTERFERENCE SEQUENCER INTERLOCK.

'CHECK FAR SIDE AND NEAR SIDE, SIDE REF ANGLES AND SET FLAG TRUE IF <= 0.0.
'L50 = 0.0!

IF (GAMAFS <= L50) THEN
GOTO 46

ELSE

GOTO 47

END IF

46 FLAG242 = TRUE

COLOR 12

'LOCATE 20, 25: PRINT "FS--SIDE REF IS 0.0 OR NEG"

47 'CONTINUE

IF (GAMANS <= LSO) THEN
GOTO 48

ELSE

_ GOTO 49

END IF

48 FLAG242 = TRUE

COLOR 12

'LOCATE 21, 25: PRINT "NS--SIDE REF IS 0.0 OR NEG"

49 FLAG242 = FALSE

'CONTINUE

'TEST 06 SUBROUTINE---THIS ROUTINE TESTS THE DISTANCE BETWEEN

'THE STRUT AND THE MSW TO ENSURE THEY DQ= NQT CQLLID_ _ =_TH!_ JL:s<
'TEST HAS TWO PARTS--TEST 6.1 FOR THE TOP MSW CLEARANCE AND TEST

'6.2 FOR THE BOTTO M MSW. <: ::_17_<

'CHECK IF STRUT IS ABOVE OR BELOW LEVEL
'THE TOP MSW CLEARANCE AND TEST 6.2 FOR THE BOTTOM MSW.

'CHECK IF THE STRUT IS ABOVE OR BELOW LEVEL

FLAG16(3) = 0

FLAG16(4) = 0
IF (XSTRUT < 0!) THEN

IF (BETATF <= BETATN) THEN
BETA6 = BET_TF

ELSE

BETA6 = BETATN

END IF

'COMPUTE THE STRUT VELOCITY (USING PSP)
KS = K6A * XPSP

KC = KII7

STRFLG = i

ELSE

'TEST 6.2, STRUT-BOTTOM MSW COMPARE NEAR & FAR SIDES FOR LARGEST BETA.
'BETA IS ALWAYS NEGATIgEI:

IF (BETABF <= BET_BN) THEN

BETA6 = BETABF

ELSE

BETA6 = BETABN

68

END IF

'CONTINUE--COMPUTETHE STRUTVELOCITY (USING PSP)
KS = K6A * XPSP
KC = -K40
STRFLG= 0

END IF

'COMPUTETHE INTEFERENCEVALUE
STM= K45 * (XSTRUT - KS) + KC * BETA6

IF (STRFLG) THEN
STMSWT= STM

'CHECK THE INTERFERENCEVALUE AGAINST THE NEGATIVE LIMIT (L61 = -51.5745)

IF (STMSWT<= L61) THEN
FLAG16(3) = 1
COLOR12
LOCATE22, 31: PRINT "STMSWTINTF'NCE "
ELSE
COLOR14
LOCATE 22, 31: PRINT " "

END IF

ELSE
STMSWB= STM

'CHECK THE INTERFERENCEVALUE AGAINST THE POSITIVE LIMIT (L62 = +84.9)

IF (STMSWB>= L62) THEN
FLAG16(4) = 1
COLOR12
LOCATE 23, 31: PRINT "STMSWBINTF'NCE"
ELSE
COLOR14
LOCATE 23, 31: PRINT " "

END IF
END IF

'TEST 07 SUBROUTINE--THIS ROUTINE TESTS TO INSURE THAT THE QCOMPOF THE
'TUNNEL DOESNOT EXCEEDTHE Q THUMBWHEELVALUESOR THE STRUT POSITIVE
'OR NEGATIVE THUMBWHEELVALUES. ALSO, IT TESTS TUNNELMACHNUMBERSQUARE[
'AGAINST 1.5625 (I.E. M = 1.25). IT ALSO CHECKS FOR SENSOR SIGNAL

'OUT-OF-RANGE FOR STRUT, PSTAT, PTOTAL, AND RANGE CODE (FOR PSTAT).

FLAG16(2) = 0

'IF (DISABE > 4!) THEN, IGNORE MODEL PITCH THUMBWHEEL LIMITS!!!

IF (DISABE > 4) THEN
GOTO 65

ELSE

GOTO 651

END IF

651 'CONTINUE

IF (XSTRUT >= XSTRDP OR XSTRUT <= XSTRDM) THEN

FLAG16(2) = 1

STRTMW = 1

COLOR 12

LOCATE 4, 45: PRINT "STRT THM'WL XEE'ED"

GOTO 64

69

ELSE
GOTO65
END IF

65 COLOR14
LOCATE4, 45: PRINT "+19.0

STRTMW= 0
64 'CONTINUE

-Ii. 0 "

IF (QCOMP>= XQDIAL) THEN
FLAG16(2) = 1
GOTO66
ELSE
GOTO671
END IF

66 COLOR12
LOCATE 19, 44: PRINT "TUNNEL Q EXCEEDED"

TQ = 1
GOTO67

671 COLOR14
IF (TQ = I) THEN

GOTO672
ELSE
GOTO67
ENDIF

672 LOCATE 19, 44: PRINT " "
TQ = 0

LOCATE 19, 44: PRINT " +53.0 0.0"
67 'CONTINUE

'LIMIT TUNNEL MACH NUMBER

IF (MACHSQ >= 1.5625) THEN

FLAG16(2) = 1
COLOR 12

LOCATE 18, 41: PRINT "TUNNEL MACH NO. EXCEEDED"

GOTO 68

ELSE

GOTO 69

69 COLOR 14

LOCATE 18, 41: PRINT " 1.2 0.0 "

END IF

68 'CONTINUE

'SIGNAL RANGE CHECK

IF (A(2) < .05 OR A(2) > 9.45) THEN

FLAG16(2) = 1
GOTO 70

ELSE

GOTO 71

END IF

70 COLOR 12

LOCATE 4, 45: PRINT "SRT SEN'R OUT RGE"

PS = 1

GOTO 557

71 COLOR 14

IF (PS = I) THEN

GOTO 558

ELSE

GOTO 557

END IF
7O

55_ LOCATE4, 45: PRINT " "
PS = 0

LOCATE4, 45: PRINT "+19.0 -Ii.0"
557 'CONTINUE

IF (C(1) < .i OR C(1) > i0!) THEN
FLAG16(2) = 1
GOTO72
ELSE
GOTO73
ENDIF

72 COLOR12
LOCATE15, 45: PRINT "PSTAT SEN'R OUT RGE"

PSS = 1
GOTO731

73 COLOR14
IF (PSS = i) THEN

GOTO732
ELSE
GOTO731
END IF

732 LOCATE15, 45: PRINT " "
PSS = 0

LOCATE 15, 45: PRINT "+57.9 +14.7 "
731 'CONTINUE

IF (C(2) < .35 OR C(2) > 4.7) THEN
FLAG16(2) = 1
GOTO74
ELSE
GOTO761
END IF

74 COLOR12
LOCATE 16, 44: PRINT "TOTAL PRESSSEN'R OUT RGE"
GOTO75
761 COLOR14
LOCATE 16, 44: PRINT "+135.0 +14.7 "
75 'CONTINUE

'SENSORRANGECODE CHECK FOR PSTAT

IF (C(3) < 3! OR C(3) > 4.5) THEN

FLAG16(2) = 1
GOTO 76

ELSE GOTO 77

END IF

76 COLOR 12

LOCATE 23, 42: PRINT "RANGE CODE (FOR PSTAT) OUT OF RGE"

LOCATE 23, 35: PRINT USING "###.##"; C(3)
GOTO 766

77 LOCATE 23, 35: PRINT "

766 'CONTINUE

'IF NO ERROR CONDITION, THE RESET FLAG16

FLAG16(2) = 0

'TEST i0 SUBROUTINE---THIS ROUTINE CALCULATES THE DIFFERENCE BETWEEN

'BETA (MSW NS & FS) AND GAMA (REF NS & FS) AND COMPARES THE ANGLE

'WITH A LIMIT VALUE OF LI00 (LI00 = 15.0 DEG). IF THIS ANGLE IS EXCEEDEE

71

'THE FLAG IS SET TRUE.

'CALCULATE THE ANGULAR DIFFERENCE BETWEEN GAMATF AND BETATF---COMBINED r_wo
'CALLS TO TEST I0 INTO ONE!

FLAG25(1) = 0

IF ((GAMATF - BETATF) >= Ll00) THEN

FLAG25(1) = 1
COLOR 12

LOCATE 7, 46: PRINT "MSW/REFTF ANG X'C'ED"
GOTO 781

ELSE

GOTO 782

782 COLOR 14

LOCATE 7, 46: PRINT "+0.0 -4.5 "
END IF

781 'CONTINUE

IF (GAMATF <= .i) THEN

FLAG25(1) = 1
GOTO 80

ELSE

GOTO 801

END IF

80 COLOR 12

LOCATE ii, 45: PRINT "REFTF IN SLP'REAM"
GTF = 1

GOTO 81

801 COLOR 14

IF (GTF = I) THEN
GOTO 802

ELSE

GOTO 81

END IF

802 LOCATE ii, 45: PRINT "
GTF = 0

LOCATE Ii, 45: PRINT "+15.0
81 'CONTINUE

IF ((GAMATN - BETATN) >= LI00) THEN

FLAG25(1) = 1
COLOR 12

LOCATE 8, 46: PRINT "MSW/REFTN ANG X'C'ED"
GOTO 82

ELSE

GOTO 83

83 COLOR 14

LOCATE 8, 46: PRINT "+0.0 -4.5 "

END IF

82 'CONTINUE

IF (GAMATN <= .I) THEN

FLAG25(1) = 1
GOTO 84

ELSE

GOTO 851

END IF

84 COLOR 12

LOCATE 12, 45: PRINT "REFTN IN SLP'REAM"

GTN = 1

GOTO 85

851 COLOR 14

72

IF (GTN = i) THEN
GOTO852
ELSE
GOTO85
END IF ,,

852 LOCATE12, 45: PRINT "
GTN = 0
LOCATE 12, 45: PRINT "+15.0 0.0"

85 ,CONTINUE

'SECONDCALL TO TEST i0
FLAG25(2) = 0
IF ((GAMABF - BETABF) >= LI00) THEN

FLAG25(2) = 1
COLOR12
LOCATE9, 46: PRINT "MSW/REFBFANG X'C'ED"
GOTO86
ELSE
GOTO87

87 COLOR14 ,,
LOCATE9, 46: PRINT "+0.0 -4.5
END IF
86 'CONTINUE

IF (GAMABF<= .i) THEN
FLAG25(2) = 1
GOTO88
ELSE
GOTO891
END IF

88 COLOR12
LOCATE 13, 45: PRINT "REFBF IN SLP'REAM"

GBF = 1
GOTO89

891 COLOR14
IF (GBF = i) THEN

GOTO892
ELSE
GOTO89
END IF ,,

892 LOCATE 13, 45: PRINT "
GBF = 0
LOCATE 13, 45: PRINT ,'+15.0 0.0"

89 ,CONTINUE

IF ((GAMABN - BETABN) >= LI00) THEN

FLAG25(2) = 1

COLOR 12
LOCATE I0, 46: PRINT "MSW/REFBN ANG X'C'ED"

GOTO 90

ELSE

GOTO 91

91 COLOR 14 ,,

LOCATE I0, 46: PRINT "+0.0 -4.5

END IF

90 'CONTINUE

IF (GAMABN <= .i) THEN

FLAG25(2) = 1

GOTO 92

73

ELSE
GOTO931
END IF

92 COLOR 12

LOCATE 14, 45: PRINT "REFBN IN SLP'REAM"

GBN = i

GOTO 93

931 COLOR 14

IF (GBN = I) THEN
GOTO 932

ELSE

GOTO 93

END IF

932 LOCATE 14, 45: PRINT "
GBN = 0

LOCATE 14, 45: PRINT "+15.0
93 'CONTINUE

'TEST ii SUBROUTINE--THIS TESTS THE MEASURED MODEL ROLL ANGLE TO INSURE

'THAT THE ROLL ANGLE DOES NOT EXCEED +275 OR -95.0 DEGREES. IF THIS IS

'EXCEEDED, A FLAG IS SET FOR OUTPUT TO THE SEQUENCER INTERLOCK.

'COMPARE THE ROLL ANGLE WITH ITS PLUS AND MINUS LIMITS, AND SET A FLAG

'TRUE IF LIMITS ARE EXCEEDED. LIIOA = +275 DEG , LII0 = -95 DEG.

FLAG25(4) = 0

IF (ROLPOT >= LilOA) THEN

FLAG25(4) = 1

ELSEIF (ROLPOT <= Lll0) THEN

FLAG25(4) = 1
END IF

IF (FLAG25(4) = I) THEN
COLOR 12 _

LOCATE 17, 44: PRINT "ROLL ANG X'C'ED"
GOTO 96

ELSE

GOTO 97

97 COLOR 14

LOCATE 17, 44: PRINT "+275.0
END IF

96 'CONTINUE

JJJ = JJ + 1

JJ = JJJ

'LOCATE 22, 55: PRINT USING "#####"; JJ

-95.0"

'DEFINE THE DIGITAL I/O CONSTANTS---SEE "DT-2817 USER M_TUAL ''
'CONTROL REGISTER WITH FACTORY BASE ADDRESS _

CONTROL.REGISTER% = &H250

'OUTPUT PORT ADDRESSES

DATA.PORT6 = &H251 : _ _
DATA.PORT7 = &H252

DATA.PORT8 = &H253

DATA.PORT9 = &H254

'ALL PORTS SET FOR OUTPUT (&HF=IIII)

OUT CONTROL.REGISTER%, &HF

DATA. VALUE(6) = TQ

DATA.VALUE (7) = STRTMW

DATA.VALUE(8) = TMR

DATA. VALUE(9) = BMSWS
'OUTPUT TO THE PORTS

OUT DATA. PORT6, DATA. VALUE (6)

74

Z
, =

l
iE

I:

OU r. _A£A.PORT7, DATA.VALUE(7)

OUi' DATA.PORT8, DATA.VALUE(8)

OUT DATA.PORT9, DATA.VALUE(9)
'READ BACK DATA THAT WAS OUTPUT ON THE PARTICULAR PORT

PORT.VALUE.READ(6) = INP(DATA.PORT6)

XYZ = PORT.VALUE.READ(6)

PORT.VALUE.READ(7) = INP(DATA.PORT7)

WXYZ = PORT.VALUE.READ(7)

PORT.VALUE.READ(8) = INP(DATA.PORT8)

VWXYZ = PORT.VALUE.READ(8)

PORT.VALUE.READ(9) = INP(DATA.PORT9)

UVWXY Z = PORT. VALUE. READ (9)

LOCATE 21, 54: PRINT USING "##"; XYZ

LOCATE 21, 56: PRINT USING "##"; WXYZ

LOCATE 21, 60: PRINT USING "##"; VWXYZ

LOCATE 21, 58: PRINT USING "##"; UVWXYZ

GOTO 1

75

i iw

Form Approved
REPORT DOCUMENTATION PAGE No07o -orsa

ii

Publit rePOJrtmq burden for th s collection of lnformat*on s est mated to dverage ! hour Der respol%e, including the time for rev!ewin 9 lnstru._ion$, searching ex,st*ng _data .sources..;
.L -- ;4 _i_laininn th_ dafJI ttd_l_l_ _ttd rnmDlet no and revlewlncl the colleclion of information c.end comments re<Jaromg this Duroen estimate or any otne¢ aspec_ ol ¢nls

_]_nerin 0 an _ - r-- - - •
(olle(tlon of information. _ncluding suggt_tion_, for reducing this burden TO Washmcjton Headquarters Services/Dlrect0_ate fo _" InformatlonOpe..rat_0ns and Repots,1215 Jefferson

Davis Highway. ¢,uite t ;_04. Arlington, VA _220_-4_02. and to the Office of Management and 8t_lget, Paperwork _eouctlon Project _u/u4_] 1BU_, wasnmgton, ut. zV:_U:l.

I, AGENCY USE ONLY (Leave 'blank) 2. REPORT DATE

July 1993
|z

4. TITLE AND SUBTITLE
A PC-based Simulatlon of the National Transonic Facility's

Safety Microprocessor

3. REPORT TYPE AND DATES COVERED
Technical Memorandum

S. FUNDING NUMBERS

6. AUTHOR(S)

J. J. Thlbodeaux, W. A. Kllgore, and S. Balakrlshna

7, PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681-0001

g. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

505-59-85-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-109003

11. SUPPLEMENTARY NOTES

J.J. Thibodeaux, NASA Langley Research Center, Hampton, VA

W.A. Kilgore, VIGYAN, Inc., Hampton, VA

S. Balakrishna, ViGYAN, Inc., Hampton, VA

1Za. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category: 62

12b. DISTRIBUTION CODE

13. ABSTRACT (Msximum 200 words)

A brief study was undertaken to demonstrate the feasibility of using a state-of-the-art off-the-
shelf high speed personal computer for simulating a microprocessor presently used for windtunnel
safety purposes at Langley Research Center's National Transonic Facility (NTF). Currently, there
is no active display of tunnel alarm/alert safety information provided to the tunnel operators, but
rather such information is periodically recorded on a process monitoring computer printout. This
does not provide on-line situational information nor permit rapid identification of safety operational
violations which are able to halt tunnel operations. It was therefore decided to simulate the existing
algorithms and briefly evaluate a real-time display which could provide both position and trouble

shooting information.

14. SUBJECT TERMS

Contro] Systems, Personal Computers, Safety Systems

-17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unc lass if led Unclass if _ed

i i |"

NSN 7S40-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

• 15. NUMBER OF PAGES

76
16. PRICE CODE

A05

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescribed by ANSI _,td Z]g-18

298-t02

